logotopalz05.jpg

El rendimiento de un avión varía enormemente en función del TOW, en inglés Takeoff weight y, en español, peso despegue. El TOW se calcula de la siguiente manera:
 
TOW = OEW + combustible + carga de pago
 
OEW = Operating Empty Weight, o peso vacío operativo. Es decir, es lo que pesa un avión listo para despegar, lo que incluye aceites y el peso de la tripulación, y se excluye el combustible y la carga de pago (payload).
 
A la hora de realizar un vuelo es ESENCIAL saber:
 
1. Qué carga de pago vamos a llevar (pasajeros + equipajes + carga adicional)
 
2. Cuánto combustible vamos necesitar, incluyendo lógicamente el combustible imprescindible para llegar al destino + combustible para llegar al alternativo + combustible para realizar esperas en destino y alternativo + combustible para rodaduda en salida y llegada + reserva mínima obligatoria + la cantidad extra adicional que se estime conveniente o necesaria (metereología adversa, aeropuertos en los que se prevea espera, etc)
 
Una vez que sepamos esos dos datos ya tenemos el TOW. Conocer con exactitud el TOW es absolutamente esencial por dos motivos:
 
a) Para poder calcular cuánta pista necesitaremos para el despegue (y aterriaje, claro)
b) Cuáles son las altitudes óptima, y máxima, de crucero.
 
Para calcular cuánta pista necesitanos no solo es necesario conocer el TOW. También hay dos factores CRUCIALES que afectan el rendimiento de los motores: temperatura ambiente y altitud del aeropuerto. A mayor altitud o mayor temperatura ambiente menos potencia ofrecen los motores. Por lo tanto, si aumenta la temperatura, la altitud o las dos cosas necesitaremos pistas más largas o un TOW menor.
 
En las especificaciones de todos los aviones hay un dato importante que es el MTOW, es decir, el Maximum Takeoff Weight o peso máximo de despegue. Para calcular es evalor se da siempre por supuesto una altitud al nivel del mar (cero pies) y una atmósfera estándar. Se entiende por atmósfera estándar una temperatura de 15ºC con una presión atmosférica de 1013 milbares (o hecto pascales) o 29,92 milímetros de mercurio. A esa atmósfera estandar se le conoce como ISA (International Standard Atmosphere) A nivel del mar, como he comentado, la ISA es de 15ºC. Pero hay unas tablas que te dicen cuál es el valor estándar a cada altitud. La temperatura va bajando con la altitud hasta llegar a unos 36.000 pies en los que la temperatura se estabiliza en torno a los -54ºC. Por ejemplo, a 60.000 pies, que era la altitud máxima del Concorde (el avión comercial que ha logrado volar a mayor altitud) la temperatura es de -56ºC. Es decir, no cambia mucho.
 
Lo importante de este rollo es que, durante el ascenso, es importante saber si ascendemos con temperaturas por encima o por debajo de la ISA. Si ascendemos con temperaturas por debajo de la ISA eso quiere decir dos cosas:
 
1. Lograremos ascender a mayor velocidad
2. Podremos alcanzar una altitud de crucero más elevada.
 
Y, por supuesto, al contrario. Si habías planificado una altitud de crucero de 41.000 pies y resulta que la ISA está algunos grados por encima de lo calculado significa que tendrás que cambiar tu plan de vuelo a una altitud inferior y, además, vas a gastar más combustible porque los motores tendrán que girar más altos para poder ofrecer la potencia necesaria para mantener la velocidad de crucero programada.
 
La mayoría de aviones te indicarán la temperatura exterior en algún panel o en el FMC con las siglas OAT (Outside Air Temperature)
 
¡Cuidado! A veces la temperatura mostrada no es la temperatura exterior (la OAT) sino la temperatura TOTAL, o TAT (Total Air Temperature) El avión, en su desplazamiento, "empuja" al aire y eso crea cierta fricción que calienta el fuselaje. La TAT es la temperatura exterior SUMADA al calor generado en el fuselaje por el efecto de la fricción del aire. Normalmente la TAT no suele ser de gran utilidad, salvo en el Concorde. Su alta velocidad de desplazamiento por el aire (máxima de Mach 2.04) generaba una TAT de ¡hasta 127ºC! Si tenemos en cuenta que la temperatura exterior a partir de 36.000 pies es de -54ºC eso quiere decir la fricción del aire con el fuselaje podría generar nada menos que 184ºC!
 
Ee el siguiente enlace hay una fantástica calculadora que, además de otros datos, te dirá la ISA en cualquier altitud:
 
http://www.digitaldutch.com/atmoscalc/
 
De todos modos, hay una fórmula muy sencilla y rapida de calcular, con escaso margen de error, para calcular cuál es la ISA de cualquier altitud. Cada 1.000 pies de ascenso la temperatura baja, aproximadamente, 2ºC. Pongamos que queremos comprobar la ISA durante el ascenso, digamos que a 22.000 pies:
 
22 x 2 = 44
 
Es decir, a 22.000 pies hay 44ºC menos que a nivel del mar. Puesto que a nivel del mar la ISA es de 15ºC...
 
15-44 = -29ºC
 
La temperatura ISA exacta a 22.000 pies es de -28.5ºC. Realmente muy aproximado :-)

Vamos, por fin, al origen de la cuestión pregunta y al por qué  he soltado todo este rollo...
 
41.000 pies son el techo (ceiling) de muchos aviones. "Techo" quiere decir que es es la altitud máxima que podrá alcanzar en CONDICIONES IDÓNEAS. Es decir: poco peso y temperatura ISA o inferior.
 
Es bastante inusual que se den ambas condiciones, por lo que lo normal es que un avión con techo en 41.000 vuele, como mucho, a 39.000 pies. Lograr 40.000 ya es todo un reto e, independientemente de la temperatura exterior, lo que es seguro es que es necesario ir ligero para alcanzar esa altitud (un TOW bajo)
 
Un clásico ejemplo: un vuelo de de larga duración como puede ser un vuelo transoceánico o intercontinental. En esos vuelos resulta absolutamente esencial cargar mucho combustible, aún yendo más o menos ligero en cuanto a carga de pago. En esos casos los niveles de vuelo inicial suelen ser bajos. FL330 o FL350 como mucho. A lo largo del vuelo se realiza lo que se llama "step climb" o ascenso escalonado. Es decir. Vuelas un par de horas a FL330. Pasadas esas horas habrás quemado unas cuentas toneladas de combustible, luego irás más ligero. En ese momento puedes ascender a un nivel de vuelo mayor (FL350 por ejemplo) en el que, normalmente, los motores funcionarán mejor y gastarán menos. Pasan otro par de horas y vuelves a estar más ligero. Ahora ya puedes hacer otro ascenso a FL370. Y así sucesivamente.
 
Vamos con la última parte...
 
Cada avión tiene unas características especiales y, por tanto, cada fabricante publica unas tablas de rendimiento (performances) que te dicen, precisamente, datos como cuál es el peso operativo vacío (OEW) o el peso máximo de despegue (MTWO) . Y muchas más cosas, como cuánta pista necesitarás o cuál es el techo en función de la carga, altitud y temperatura.  Para complicar un poco más las cosas es más que habitual que un mismo avión pueda montar motores diferentes. Cada motor, claro está, tiene un empuje (potencia) diferente y, por tanto, los rendimientos serán diferentes en función del motor elegido. Y para terminar de rematar las cosas resulta que no te puedes fiar de las tablas que los fabricantes reales publican en sus webs porque lo normal es que las diferencias entre el rendimiento real del avión y el de un avión simulado son tremendas. Por ejemplo, en la vuelta que diseñé para el Concorde usé como referencia el Concorde X de Flightsim Labs, un avión muy fiel a la realidad. Pues bien, varios compañeros que usaban modelos de Concorde gratuito reportaron que, aún con los tanques al 100%, tenían que "hacer trampa" y repostar en el aire porque de otro modo no podían llegar a los destinos. MORAJELA: usa siempre las tablas de rendimiento del avión que uses. El problema es que normalmente solo los aviones de pago ofrecen las tablas de rendimiento de sus modelos. Y tampoco todos... En los gratuitos normalmente todo se tiene que hacer "a ojo" Se suelen crear unas tablas en las que se anota el consumo y rendimiento del avión a lo largo de una serie de vuelos. Cuantos más vuelos realices y más mediciones hagas más te acercarás al rendimiento de ese avión en particular. Pero es evidente que los primeros vuelos serán un poco una lotería. Como por algún sitio hay que empezar, yo partiría siempre de las tablas oficiales e iría modificando según sea nesario. Esta web es un buen sitio para obtener documentación oficial de aviones:
 
http://www.smartcockpit.com/aircrafts-models.html
 
No están TODOS los documentos de TODOS los aviones de la lista. Pero con un poco de suerte encontrarás lo que necesitas.
 
Aunque lo "clásico" es calcular el rendimiento del avión basándose en esas tablas de rendimiento lo habitual es usar herramientas de cálculo especializadas como TOPCAT o TOPER. También hay otras específicamente diseñadas para calcular el gasto de combustible. No obstante, la mayoría de herramientas de gasto de combustible son solo orientativas, y no precisas, porque como has visto para calcular el combustible necesario para una ruta es esencial conocer, además de la distancia a recorrer, tres datos: tipo de motor, peso del avión sin combustible (ZFW o Zero Fuel Weight) y metereología en ruta (temperatura y vientos) Si una herramienta de cálculo de combustible no te pide todos esos datos, entonces ten por seguro que no es precisa y que solo te está ofreciendo una estimación con un amplio margen de error. Yo hace mucho que uso PFPX y estoy más que satisfecho con ella. Pero hay muchas más flores en el campo para elegir.
 
Como ves, volar, aunque sea en simulación, no es solo colocar una vión en la pista, acelerar a tope y esperar a que despegue mientras echas el joystick todo hacia atrás. Si quieres hacer las cosas bien hay que preparar bien los vuelos, lo que resulta, a la vez, tan entretenido como divertido. Uno de los retos que mayores satisfacciones (y frustaciones) es precisamente realizar correctamente todos esos cálculos y comprobar que el avión se comporta conforme a lo esperado y que los cálculos de combustibles realizados son los correctos.
 
Para hacer las cosas bien del todo aún hace falta tener otros factores en cuenta como la potencia de despegue y ascenso reducida o al Índice de Coste (CI o Cost Index) Pero eso me temo que habrá que dejarlo para otra ocasión...
 
¡Ah! ¡Casi lo olvido! Independientemente del nivel de vuelo que tu avión sea capaz de alcanzar en función de su peso hay unas normas internacionales un tanto complicadas que te obligan a usar un nivel de vuelo determinado (par o impar) en función de la ruta elegida y de los países por los que vueles. Teníes más información aquí:
 
http://www.airalandalus.org/content/sobre-la-selecci%C3%B3n-selecci%C3%B3n-del-nivel-de-vuelo-par-o-impar